

1
Dobot.us

MG400 QUICKSTART GUIDE
By In-Position Technologies

2
Dobot.us

Contents
Getting Started .. 3

Hardware Required ... 3
Downloading the Software .. 4
Connecting to the MG400 .. 5

Configuring Your Hardware .. 5
Configuring Your IP-Address .. 7
Connecting to the MG400 with DobotStudio2020 .. 11

Enabling the Robot .. 12
Using the Unlock Button to move the MG400 .. 13
Using the Jog Panel to Move the MG400 ... 14
MG400 IO .. 17

MG400 IO Wiring Example ... 18
Programming the MG400 .. 19

Basics .. 19
Saving Points ... 20
Different Move Types .. 21
Blockly ... 22

Porting Blockly Program to Script ... 25
Blockly Example 1: Basic Moves ... 27
Blockly Example 2: Using IO #1... 28
Blockly Example 3: Modified Parameters in Move .. 29

Script ... 30
Script Example 1: Basic Moves ... 33
Script Example 2: Basic IO Operations .. 33
Script Example 3: Custom Function .. 34
Script Example 4: TCP/IP Client .. 35
Script Example 5: Variable palletizing ... 36

Troubleshooting & Documents .. 40
Dobot Connectivity Guide for MG400 .. 40
Hardware User Guide .. 40
DobotStudio2020 Dobot User Guide .. 40
MG400 Spec Sheet .. 40
Clearing MG400 Errors .. 40
LED Functionality ... 41
Using Sync with IO Commands ... 41

Contacts .. 42
Phone .. 42
Email ... 42

3
Dobot.us

Getting Started
Hardware Required
To operate the robot, you’ll need:

• MG400 Robot

• MG400 E-Stop

• MG400 power adapter

• Ethernet cable (included cable
preferred)

• A PC running windows

• If your PC doesn’t have an Ethernet
port, you’ll need a USB to Ethernet
adapter

See Connecting to the MG400 for details on cable connections.

4
Dobot.us

Downloading the Software
You’ll need the MG400 software before getting connected. Download it off the Dobot official
manufacturer’s site or contact your distributor for the most recent version.
The software you need is called “DobotStudio2020”

While DobotSCStudio functions with the MG400, we recommend using Dobotstudio2020.

https://www.dobot.cc/downloadcenter/mg400.html#most-download
https://www.dobot.cc/downloadcenter/mg400.html#most-download

5
Dobot.us

Connecting to the MG400
Configuring Your Hardware
Before making any connections, be sure your MG400 power switch is set to “off” (O), like shown here:

Make the following connections to the MG400:

• Plug the power connector into a standard US wall outlet
• Plug the DC output of the power connector into the robot port labeled “POWER”
• Plug the E-Stop connector into the port labeled “E-STOP”
• Plug your Ethernet cable into the port labeled “LAN 1” and plug the other end into your PC

The result should look like this:

6
Dobot.us

Next, flip the ON/OFF switch to the ON position. The switch LED should turn on, as shown here:

The LED on the front side of the robot base will now be blinking white to signify that the robot is booting
up. Once the robot is ready for a connection, the LED will be a solid blue:

Robot Booting Robot Ready

7
Dobot.us

Configuring Your IP-Address
You’ll need to configure the IP-Address of the MG400 to be able to connect to it with your computer.1

Go to the control panel:

Click “Network and Internet”

1 For more information on why IP-Addresses are necessary, see here: https://www.paessler.com/it-explained/ip-
address

8
Dobot.us

Click “Network and Sharing Center”:

Click “Change adapter settings”:

9
Dobot.us

Double click the adapter you’d like to use:

Click “Properties” and then double-click “Internet Protocol Version 4 (TCP/IPv4)”

10
Dobot.us

The LAN1 port of the MG400 is always set to the IP address 192.168.1.6 with subnet 255.255.255.0. Set
your IP-Address to 192.168.1.x where x is any number between 0 and 255 that is not 6. As an example, I
used this one:

Leave the rest of the information blank and then hit okay to exit the IPv4 prompt. Hit okay a second time
to exit the Ethernet properties prompt.

You are now ready to connect to the MG400.

11
Dobot.us

Connecting to the MG400 with DobotStudio2020
Open DobotStudio2020. The screen should look like this:

The search bar should have the MG400 pre-populated:

If this is not the case:

• Check that IP-Address is correct (See Configuring Your IP-Address)
• Check that the robot is powered on and shows a blue solid light (See Configuring Your

Hardware)
• Try the Dobot connectivity guide (See Dobot Connectivity Guide for MG400)
• If the above options all fail, get in touch with your Dobot distributor for additional support

If you are able to connect, hit connect. The robot should now be online.

12
Dobot.us

Enabling the Robot
In robotics, the robot is unable to move until it has
been enabled. Before enabling the MG400, Joints 2
and 3 are mechanically locked and Joints 1 and 4 can
be rotated freely. This state is considered the “disabled
state.” After enabling the MG400 by left-clicking the
button shown below, the MG400 is enabled. The
robot’s joints are now active and cannot be moved by
hand.
Upon starting up and trying to enable for the first time, the MG400 will ask you for the payload
information.

The definition of “Payload” is the net weight that you have attached to the robot. The MG400 can
handle a maximum payload of 750g.

If you have not attached anything to the end of arm tool (like in the picture below), ensure that the
payload is set to 0g. Knowing this weight helps the robot determine when it has collided with something
while moving. The offset values are the x and y offsets of the center of gravity of your tool. You may
leave these offsets blank most of the time.

Disabled Enabled

13
Dobot.us

If you attach something to the robot in the future, be sure to change the payload in the MG400 settings.

After enabling the robot, you are ready to begin motion. The front LED should now be green. If an error
appears and the robot remains disabled, that means something is preventing the robot from booting.
See Clearing MG400 Errors.

Using the Unlock Button to move the MG400
A great perk of the MG400 is the built-in unlock button. The unlock button allows the
user to “drag and drop” the robot. This allows for fast programming and development
compared to traditional methods.

To use the unlock function, simply click the button on the GM400 arm. The green light
will change to blinking blue. You can now re-position the robot freely. Be sure to click the
“unlock” button again before commanding motion.

14
Dobot.us

Using the Jog Panel to Move the MG400
For a more repeatable way to move the robot, the user can use the jog window to position the robot
electronically. To open the jog window, click “control” on the right side of DobotStudio2020:

From there, you will be able to jog the robot by either cartesian or joint moves. Here are the
cartesian/linear coordinates:

X+

Z+

Y+

R+

15
Dobot.us

Here are the joint coordinates:

In “Jog” mode, the robot will jog in the selected direction until the button is released. The speed of the
robot is controlled by the speed slider on the top of the screen.

16
Dobot.us

In “Step” mode, the robot will increment the selected distance in mm whenever the user taps a button.
For example, the following button configuration would drive the robot 1mm in the x-direction when
clicked:

To get rid of the jog window, hit the “fold” button:

17
Dobot.us

MG400 IO

The MG400 has 16 digital inputs and 16 digital outputs that function on 24VDC that are visible on the
back of the robot base. The MG400 also has 2 digital inputs and 2 digital outputs on the arm of the robot
for easy access to robot tools. Dobot provides the connector for this IO with the MG400.

To use the rear-IO, compress the orange tab and insert a wire.
Release the tab and the wire should be firmly clamped in the IO
slot. We recommend zip-tieing your automation setup so the IO
wires don’t have any strain.

To view IO status and toggle IO easily, use the “I/O” tab:

18
Dobot.us

MG400 IO Wiring Example
Here is an example on how to wire two 24VDC sensors with the following pinouts:

Note: your sensors may have different wiring. Incorrect wiring could damage the MG400.

VACUUM SENSOR SOLENOID

19
Dobot.us

Programming the MG400
Basics
There are many ways to program the MG400. In this guide, we will cover Blockly and Script. Blockly is a
visual, block-based programming method. Script is programming in Lua, a high-level programming
language similar to Python. Generally, Blockly is friendlier to new users and quick applications while
Script is preferred by more experienced users and is suited towards

Blockly

• Visual block-building
• Also known as “Scratch”
• Suited towards simple applications

Script

• Simple structured-text programming in Lua
o Similar to Python

• Suited towards more advanced applications/more experienced users

For a first-time application, it is recommended to start with Blockly. You may port your
project to a script project (see Porting Blockly Program to Script).

20
Dobot.us

Saving Points
Saving points is the same in Blockly and in
Script and is usually done before writing any
code.
Open the points list in the top right of the
screen. Hitting “add” will take the robot’s
current cartesian position and save it as a point.

You can rename points by double-clicking the
name P1, P2, etc.

You can tweak a point by double-clicking an
X,Y,Z, or R value.

By clicking a point, you are given the options to
“Cover”, “RunTo”, or “Delete”. Cover will
overwrite the selected point with the current
position of the robot. RunTo will move the
robot to the selected point. Delete will remove
the point.

21
Dobot.us

Different Move Types
In Dobot Studio, you’ll find several move types. Here is a list of their functions and where to use them:

• MovJ
o Joint-based trajectory move to

point P
o Fastest, most efficient move

• MovL
o Linear Trajectory to point P
o Good for insertions, picking parts,

paths
• Jump

o Builds in a routine that
moves linearly up a
height and down to
point P

o List of parameters in settings
• JointMovJ

o Move to joint position instead of
cartesian position

o Generally not used
• RelMovJ

o MovJ to an offset X,Y,Z,R position
instead of to a fixed point

o Joint Trajectory
• RelMovL

o MovL to an offset X,Y,Z,R position
instead of to a fixed point

o Linear Trajectory
• Arc

o Partial circular trajectory

• Circle
o Full circle trajectory

22
Dobot.us

Blockly
Open up a new Blockly program by clicking the “Homepage” button and then clicking the
“DobotBlockly” button

This will open up the Blockly Programming Interface. These are the key points
of the layout:

Block Types Blocks Workspace

Points Manager,
IO, Jog window Start/Stop

Trash to delete
blocks

23
Dobot.us

Start your program by adding some points in your points list (See Saving Points).
To add a point, navigate to “Move” and then hit “Advanced configuration”:

This will open the move panel. Select your type of move and hit “Save” (for more info, see Different
Move Types)

24
Dobot.us

Drag the block into a position in your blockly workspace. Note
that the blocks need to “click” together.

To copy blocks, select a block, hit “ctrl + x”, and “ctrl + v” to
paste. From there, you can edit the point names. You can also
right click and hit “duplicate” to make copies.
From there, you can make simple programs. For example, the
program shown here will move to points 1, 2, 3, and 4.

25
Dobot.us

Porting Blockly Program to Script
Often times, it’s easier to start in Blockly and transfer to script once the basic program is there.

Start by opening your blockly program. Be sure it is saved. Navigate to File -> Export Project

Name the file and save it somewhere you will remember. Then hit “Export”

26
Dobot.us

After that, open up the script interface.

Go to File -> Import project and select your exported project

Your blockly program will now be displayed as script.

27
Dobot.us

Blockly Example 1: Basic Moves
This program will run to points 1, 2, 3, and 4. At each point, the MG400 will wait 1 second to proceed.
This process will repeat 10 times before ending.

28
Dobot.us

Blockly Example 2: Using IO #1
This program will execute a loop 10 times. Each time, it will wait until Digital Input 1 is high. After the
signal goes high, it will execute 10 times.

Without the “Stop at this point” command, the program will not work. For more information on why
the Sync function is necessary, see Using Sync with IO Commands.

Remember you can monitor this with the IO panel to help debug: (right side of studio)

29
Dobot.us

Blockly Example 3: Modified Parameters in Move
By right-clicking a move and hitting “edit”, you may make special configurations for that move. For
example, you can have slower velocity and acceleration on an insertion move. Or you can Have an IO
toggle a certain distance into a move.

30
Dobot.us

Script
Open up a new Script program by clicking the “Homepage” button and
then clicking the “Script” button

This scripting language is called Lua. It is similar to Python and should be
familiar to those who know structured text programming. Aside from the Dobot functions, everything in
Lua is supported here.2

There are two files that open on bootup: scr0.lua and global.lua.

• scr0.lua
o Used for motion commands
o Used for sequential code

• global.lua
o Used for global variables
o Used for user functions

• scr1.lua, scr2.lua, etc.
o User may create as many parallel threads as they desire by hitting the +

o Recommended for monitoring IO, TCP/IP communications, etc.
o It is recommended to avoid motion commands in parallel threads. This could lead to

erratic behavior

2 If you are unfamiliar with structured-text programming, there is a great Lua guide here:
https://www.tutorialspoint.com/lua/index.htm

31
Dobot.us

Robot Functions Workspace

Points Manager,
IO, Jog window

Start/Stop

32
Dobot.us

Users may use the built-in robot functions on the left to quickly deploy code without worrying about
Syntax:

“--” signifies a comment in Lua

Double-Click to insert
a command Double-Click to insert

a command with
optional parameters

33
Dobot.us

Script Example 1: Basic Moves
This script runs to P1 and P2 with normal parameters. Afterwards, it goes to P3 with 50% speed and 20%
velocity with a CP = 1.

src0.lua

MovJ(P1) --move to P1 with a joint trajectory
MovL(P2) --move to P2 with a linear trajectory
MovJ(P3, {CP=1, SpeedJ=50, AccJ=20}) --move to P1 with a joint trajectory at 50% speed

global.lua

--empty

Script Example 2: Basic IO Operations
This script iterates 10 times in a loop. It starts by moving to P3 and then will move to P1 is DI1 is high or
P2 if DI1 is not high.

src0.lua

for count = 1, 10 do
 MovJ(P3)
 Sync()
 if (DI(1))==1 then
 MovJ(P1)
 else
 MovJ(P2)
 end
 Wait(1000)
end

global.lua

--empty

34
Dobot.us

Script Example 3: Custom Function
If you have repetitive code, use a custom function to save on time and programming efficiency. The
below example uses a custom function named “partInsertion()”. That function is defined in global.lua
and called in scr0.lua during execution.

src0.lua

while true do
 MovJ(P1) --clearpoint
 MovJ(P2) --process point 1
 partInsertion()
 MovJ(P3) --process point 2
 partInsertion()
 MovJ(P4) --process point 3
 partInsertion()
 Wait(1500)
end

global.lua

function partInsertion()
 RelMovL({0, 0, -10,0},{CP=0, SpeedL=20, AccL=20}) --move 10mm downwards at 20% speed
 Sync() --Sync() before IO commmand
 DO(1,ON) --toggle DIO on
 Wait(1500) -- wait 1500ms (1.5s)
 Sync() --Sync() before IO commmand
 DO(1,OFF) --toggle DIO off
 RelMovL({0,0,10,0}) --move back up
end

35
Dobot.us

Script Example 4: TCP/IP Client
You can have the MG400 run a program on-board

src0.lua

-- Version: Lua 5.4.1
--Robot code:
--- VAR CONFIG
local ip="192.168.1.6" -- IP address of the robot as a server
local port=6001 -- Server port
local err=0
local socket=0

--- PROGRAM
err, socket = TCPCreate(true, ip, port)
if err == 0 then
 err = TCPStart(socket, 0)
 if err == 0 then
 local RecBuf
 while true do
 TCPWrite(socket, "tcp server test") -- Server sends data
 err, RecBuf = TCPRead(socket,10,"string") -- Server receives
 if err == 0 then –-if you received a message…
 Go(P1) --Start to run motion commands
 Go(P2)
 print(RecBuf.buf)
 else
 print("Read error ".. err)
 break
 end
 Wait(100)
 end
 else
 print("Create failed ".. err)
 end
 TCPDestroy(socket)
else
 print("Create failed ".. err)
end

global.lua

--empty

This may be run with the python script shown here:

MG400_simpleSock
et.py

36
Dobot.us

Script Example 5: Variable palletizing
This script takes in variables for X,Y,Z, and R positions of two pallets sitting in any X-Y plane. This
example program is of a pick + camera inspect + place sequence.

src0.lua

-- VARIABLES (TO BE POPULATED BY USER)
--IO items
cameraSignal_in = 5 --set this to the digital input of the camera
cameraSignal_out = 3 --set this to the digital output trigger from the robot to the
camera
gripperSignal_out = 2 --set this to the digital output for the gripper

--input pallet parameters (this is where you pick up parts)
x_input_startingPoint = 300 --x coordinate of robot when above the first pallet slot
y_input_startingPoint = 100 --y coordinate of robot when above the first pallet slot
x_input_pallet = 10 --x distance between spots in pallet, defined in mm
y_input_pallet = -25 --y distance between spots in pallet, defined in mm
z_input_pallet = 10 --defined in mm, same for all input pallet points
r_input_pallet = 90 --defined in degrees, same for all input pallet positions
x_input_num_iterations = 4
y_input_num_iterations = 3 --this is an 8x3 pallet where we have 8 rows (x shifts), 3
columns (y shifts)
num_parts_input_pallet = x_input_num_iterations * y_input_num_iterations --calculate
total input items

--output pallet parameters (this is where you put good parts)
x_output_startingPoint = 250 --x coordinate of robot when above the first pallet slot
y_output_startingPoint = -70 --y coordinate of robot when above the first pallet slot
x_output_pallet = -15 --x distance between spots in pallet, defined in mm
y_output_pallet = 26 --y distance between spots in pallet, defined in mm
z_output_pallet = -10 --defined in mm, same for all output pallet points
r_output_pallet = 0 --defined in degrees, same for all output pallet positions
x_output_num_iterations = 3
y_output_num_iterations = 4 --this is an 8x3 pallet where we have 8 rows (x shifts), 3
columns (y shifts)
num_parts_output_pallet = x_output_num_iterations * y_output_num_iterations --
calculate total input items

--reset counters
x_input_iter = 0
y_input_iter = 0
x_output_iter = 0
y_output_iter = 0
input_pallet_finished = 0
output_pallet_finished = 0

-- PROGRAM VARIABLES (DO NOT MODIFY)
--set inital pick and place point
pickPoint = {armOrientation="right",
coordinate={x_input_startingPoint+x_input_iter*x_input_pallet,

37
Dobot.us

y_input_startingPoint+y_input_iter*y_input_pallet, z_input_pallet, r_input_pallet,
0.000000, 0.000000},tool=0, user=0}
placePoint={armOrientation="right",
coordinate={x_output_startingPoint+x_output_iter*x_output_pallet,
y_output_startingPoint+y_output_iter*y_output_pallet, z_output_pallet,
r_output_pallet, 0.000000, 0.000000},tool=0, user=0}

-- PROGRAM (USER MAY MODIFY)
Go(clearPoint) --this is my clear point
print('Starting Program')
while (input_pallet_finished == 0) and (output_pallet_finished == 0) do
 --pick part
 MovJ(pickPoint)
 inputPalletIter()
 pickPart()

 --INSPECT PART
 MovJ(cameraPoint)
 DO(cameraSignal_out,ON)
 Sync()
 Wait(500)
 DO(cameraSignal_out,OFF)
 Sync()

 --place part if good
 if DI(cameraSignal_in)==OFF then --put your camera's "good part" digital input here
 MovJ(placePoint)
 outputPalletIter()
 placePart()
 else
 MovJ(dumpPoint)
 placePart()
 end
end

--clearpoint
Go(clearPoint)

global.lua

-- Version: Lua 5.4.1

function pickPart()
 local Offset = {0, 0, -10, 0}
 local Option={CP=1, SpeedL=50, AccL=20}
 RelMovL(Offset, Option)
 Sync()
 DO(gripperSignal_out, ON)
 Wait(500)
 Offset = {0, 0, 10, 0}
 RelMovL(Offset, Option)
 Sync()

38
Dobot.us

end

function placePart()
 local Offset = {0, 0, -10, 0}
 local Option={CP=1, SpeedL=50, AccL=20}
 RelMovL(Offset, Option)
 Sync()
 DO(gripperSignal_out, OFF)
 Wait(500)
 Option={CP=1, SpeedL=100, AccL=75}
 Offset = {0, 0, 10, 0}
 RelMovL(Offset, Option)
 Sync()
end

function inputPalletIter()
 --this funciton iterates the input pallet

 if (x_input_iter+1) < x_input_num_iterations then
 --if x row isn't finished, keep 1 incriment in the x
 x_input_iter = x_input_iter + 1
 elseif (y_input_iter+1) < y_input_num_iterations then
 --else if y column isn't finished, x iter set to 0, incriment 1 in the y
 print('GOT HERE')
 x_input_iter = 0
 y_input_iter = y_input_iter + 1
 else
 --else input pallet is done
 print('INPUT PALLET DONE')
 x_input_iter = 0
 y_input_iter = 0
 input_pallet_finished = 1
 end
 pickPoint = {armOrientation="right",
coordinate={x_input_startingPoint+x_input_iter*x_input_pallet,
y_input_startingPoint+y_input_iter*y_input_pallet, z_input_pallet, r_input_pallet,
0.000000, 0.000000},tool=0, user=0}
 Sync()
end

function outputPalletIter()
 --this funciton iterates the output pallet

 if (x_output_iter+1) < x_output_num_iterations then
 --if x row isn't finished, keep 1 incriment in the x
 x_output_iter = x_output_iter + 1
 elseif (y_output_iter+1) < y_output_num_iterations then
 --else if y column isn't finished, x iter set to 0, incriment 1 in the y
 print('GOT HERE')
 x_output_iter = 0
 y_output_iter = y_output_iter + 1
 else
 --else input pallet is done

39
Dobot.us

 print('OUTPUT PALLET DONE')
 x_output_iter = 0
 y_output_iter = 0
 output_pallet_finished = 1
 end
 placePoint={armOrientation="right",
coordinate={x_output_startingPoint+x_output_iter*x_output_pallet,
y_output_startingPoint+y_output_iter*y_output_pallet, z_output_pallet,
r_output_pallet, 0.000000, 0.000000},tool=0, user=0}
 Sync()
end

40
Dobot.us

Troubleshooting & Documents
Dobot Connectivity Guide for MG400

How to connect
MG400 using software

Hardware User Guide

Dobot MG400
Hardware User Guide
DobotStudio2020
Dobot User Guide

DobotStudio2020
User Guide V1.1.1(2020)

MG400 specs.pdf

Clearing MG400 Errors
The MG400 will error out when the user tries to perform one of many forbidden actions or the robot
cannot perform a given task. You can tell the robot is in an error state without a PC because the front
LED will be blinking red. Common cases where a user can see an error include:

• Attempting to enable in an invalid position
• A collision was detected
• The robot is violating the parallelogram limits (too close to the base)
• The user attempted to command the robot to hit itself or move outside the max reach

An error is indicated by the log in the top right of DobotStudio2020:

To clear the error, press the log and view what the error was. It may require you to resolve the issue
before hitting “clear alarm.”

MG400 Specs

https://www.dobot.us/download/mg400-specs-2/
https://www.dobot.us/download/dobotstudio-user-guide/
https://www.dobot.us/download/connecting-mg400-using-software/
https://www.dobot.us/download/mg400-hardware-user-guide/

41
Dobot.us

LED Functionality
The LED on the front right of the MG400 base can glow several colors. This tells us what state the robot
is in without needing a computer.

Color State Meaning

White Blinking Booting

Blue Solid Ready,
disabled

Blue Blinking Unlock button
pressed – free
to drag robot

Green Solid Enabled, Ready

Green Blinking Executing
Program

Red Blinking Error

Using Sync with IO Commands
The Sync() function (“Stop at this point” in blockly) is essential for the use of MG400 DIO.

The reason for this is queuing. Similar to other robots, the MG400 compiles all commands very quickly
and then executes them in real time. The reading of inputs is generally queued immediately and not in
sync with the real-time execution, like we generally want IO to be.

When reading from an IO or writing to an IO, use a Sync() or Stop at this point block before the IO
command, like shown below:

 Reading from an IO Writing to an IO

42
Dobot.us

Contacts
Don’t hesitate to reach out for help, questions, and sales. You may reach IP-Tech Dobot support in any
of the following ways:

Phone
Customer Service/Sales: 877-478-3241

Email
Help email: help@iptech1.com

mailto:help@iptech1.com

	Getting Started
	Hardware Required
	Downloading the Software
	Connecting to the MG400
	Configuring Your Hardware
	Configuring Your IP-Address
	Connecting to the MG400 with DobotStudio2020

	Enabling the Robot
	Using the Unlock Button to move the MG400
	Using the Jog Panel to Move the MG400
	MG400 IO
	MG400 IO Wiring Example

	Programming the MG400
	Basics
	Saving Points
	Different Move Types
	Blockly
	Porting Blockly Program to Script
	Blockly Example 1: Basic Moves
	Blockly Example 2: Using IO #1
	Blockly Example 3: Modified Parameters in Move

	Script
	Script Example 1: Basic Moves
	Script Example 2: Basic IO Operations
	Script Example 3: Custom Function
	Script Example 4: TCP/IP Client
	Script Example 5: Variable palletizing

	Troubleshooting & Documents
	Dobot Connectivity Guide for MG400
	Hardware User Guide
	DobotStudio2020 Dobot User Guide
	MG400 Spec Sheet
	Clearing MG400 Errors
	LED Functionality
	Using Sync with IO Commands

	Contacts
	Phone
	Email

